Authors

* External authors

Date

Share

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

Catherine Weaver*

Roberto Capobianco

Peter R. Wurman

Peter Stone

Masayoshi Tomizuka*

* External authors

2024

Abstract

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equation combined with a set of perturbing weights to model arbitrary motion. The DMP's target-driven system ensures that online trajectories can be generated from the current state, returning to the demonstration. In racing, vehicles often operate at their handling limits, making precise control of acceleration dynamics essential for gaining an advantage in turns. We introduce the Acceleration goal (Acc. goal) DMP, extending the DMP's target system to accommodate accelerating targets. When sequencing DMPs to model long trajectories, our (Acc. goal DMP explicitly models acceleration at the junctions where one DMP meets its successor in the sequence. Applicable to DMP weights learned by any method, the proposed DMP generates trajectories with less aggressive acceleration and jerk during transitions between DMPs compared to second-order DMPs. Our proposed DMP sequencing method can recover from trajectory deviations, achieve competitive lap times, and maintain stable control in autonomous vehicle racing within the high-fidelity racing game Gran Turismo Sport.

Related Publications

XAI-Guided Continual Learning: Rationale, Methods, and Future Directions

WIREs, 2025
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Providing neural networks with the ability to learn new tasks sequentially represents one of the main challenges in artificial intelligence. Unlike humans, neural networks are prone to losing previously acquired knowledge upon learning new information, a phenomenon known as …

Interpretable Memory-based Prototypical Pooling

WSDM, 2025
Alessio Ragno*, Roberto Capobianco

Graph Neural Networks (GNNs) have proven their effectiveness in various graph-structured data applications. However, one of the significant challenges in the realm of GNNs is representation learning, a critical concept that bridges graph pooling, aimed at creating compressed…

Intermediate Layers of LLMs Align Best With the Brain by Balancing Short- and Long-Range Information

CCN, 2025
Michela Proietti*, Roberto Capobianco, Mariya Toneva

Contextual integration is fundamental to human language comprehension. Language models are a powerful tool for studying how contextual information influences brain activity. In this work, we analyze the brain alignment of three types of language models, which vary in how the…

  • HOME
  • Publications
  • Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.