Authors
- Catherine Weaver*
- Roberto Capobianco
- Peter R. Wurman
- Peter Stone
- Masayoshi Tomizuka*
* External authors
Date
- 2024
Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing
Catherine Weaver*
Peter R. Wurman
Masayoshi Tomizuka*
* External authors
2024
Abstract
We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equation combined with a set of perturbing weights to model arbitrary motion. The DMP's target-driven system ensures that online trajectories can be generated from the current state, returning to the demonstration. In racing, vehicles often operate at their handling limits, making precise control of acceleration dynamics essential for gaining an advantage in turns. We introduce the Acceleration goal (Acc. goal) DMP, extending the DMP's target system to accommodate accelerating targets. When sequencing DMPs to model long trajectories, our (Acc. goal DMP explicitly models acceleration at the junctions where one DMP meets its successor in the sequence. Applicable to DMP weights learned by any method, the proposed DMP generates trajectories with less aggressive acceleration and jerk during transitions between DMPs compared to second-order DMPs. Our proposed DMP sequencing method can recover from trajectory deviations, achieve competitive lap times, and maintain stable control in autonomous vehicle racing within the high-fidelity racing game Gran Turismo Sport.
Related Publications
Providing neural networks with the ability to learn new tasks sequentially represents one of the main challenges in artificial intelligence. Unlike humans, neural networks are prone to losing previously acquired knowledge upon learning new information, a phenomenon known as …
Graph Neural Networks (GNNs) have proven their effectiveness in various graph-structured data applications. However, one of the significant challenges in the realm of GNNs is representation learning, a critical concept that bridges graph pooling, aimed at creating compressed…
Contextual integration is fundamental to human language comprehension. Language models are a powerful tool for studying how contextual information influences brain activity. In this work, we analyze the brain alignment of three types of language models, which vary in how the…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



